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SUMMARY

This paper reports on a numerical algorithm for the steady flow of viscoelastic fluid. The conservative
and constitutive equations are solved using the finite volume method (FVM) with a hybrid scheme for the
velocities and first-order upwind approximation for the viscoelastic stress. A non-uniform staggered grid
system is used. The iterative SIMPLE algorithm is employed to relax the coupled momentum and
continuity equations. The non-linear algebraic equations over the flow domain are solved iteratively by
the symmetrical coupled Gauss–Seidel (SCGS) method. In both, the full approximation storage (FAS)
multigrid algorithm is used. An Oldroyd-B fluid model was selected for the calculation. Results are
reported for planar 4:1 abrupt contraction at various Weissenberg numbers. The solutions are found to
be stable and smooth. The solutions show that at high Weissenberg number the domain must be long
enough. The convergence of the method has been verified with grid refinement. All the calculations have
been performed on a PC equipped with a Pentium III processor at 550 MHz. Copyright © 2001 John
Wiley & Sons, Ltd.

KEY WORDS: FAS multigrid algorithm; FVM; non-uniform staggered grid; Oldroyd-B fluid; SIMPLE
algorithm

1. INTRODUCTION

Polymeric fluids are of particular interest in the numerical simulation community because of
their wide applications in materials processing, for example, extrudation of polymers through
dyes. Their behavior is different from that of Newtonian fluids in ways that are often complex
and striking.

Flow of non-Newtonian materials through abrupt contractions, the stick–slip problem, and
the extrudate swell have been designated the most important problems for both experimental-
ists and numerical analysts.
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The first numerical simulations of flows of viscoelastic fluids have only found limited use in
view of a reduced range of Weissenberg numbers. This phenomena is called the ‘high-
Weissenberg number problem’ (Reference [1], chapter 11). The cause of the failure of these
numerical simulations is purely numerical: the mixed elliptic–hyperbolic nature of the equa-
tions, geometrical singularities (corner of the abrupt contraction, stick–slip transition), large
stress concentration, etc.

Many numerical methods have been used and a variety of results have been produced. Early
attempts were based on the finite difference method [2]. In recent years, successful finite
element methods have emerged. For instance, Marchal and Crochet [3] developed a new mixed
finite element method. This method permits the simulation of the flows of upper convected
Maxwell and Oldroyd-B fluids at rather high values of the Weissenberg number. Their
numerical scheme introduced an element which has a 4×4 subdivision of the element for
stress and an artificial diffusion by non-consistent streamline upwind (SU) for discretizing the
constitutive equation. King et al. [4] and Bindette et al. [5] developed an explicitly elliptic
momentum equation (EEME). Rajagopalan et al. [7] proposed an elastic–viscous split-stress
finite element method coupled with the streamline upwind Petrov–Galerkin (SUPG) method
for the viscoelastic flow system. Another approach is a combined pseudo-spectral/finite
element method developed by Beris et al. [6]. Fortin and Fortin [9] simulated the flow through
the 4:1 planar contraction of an Oldroyd-B fluid by using the SU technique and the
Lesaint–Raviart method, and they obtained solutions at high Weissenberg numbers. In 1990,
Fortin and Fortin [10] solved the stick–slip flow of an Oldroyd-B fluid by using an iterative
method based on the generalized minimal residual (GMRES) method; they obtained solutions
for moderate Weissenberg numbers. Later, Fortin and Zine [8] redefined an extra-stress tensor
and improved the range of convergence.

The finite volume method (FVM) has gradually been used more within the viscoelastic
context [11–14], since this method has been used successfully in other fields of computational
fluid mechanics. Raghay and Hakim [15] have developed an FVM for solving the White
Metzner fluid in 4:1 planar contraction.

In this paper we are interested in the introduction of the multigrid method [full approxima-
tion storage (FAS)] and a comparison of CPU between the single grid and multigrid algorithm
using a family of meshes. For calculations we have selected the Oldroyd-B model on the 4:1
planar contraction. First we state the governing equations for the Oldroyd-B fluid and we give
the boundary conditions for the planar 4:1 contraction. In Section 3 we describe the finite
volume approximations of the governing equations and boundary conditions. A multigrid
method (FAS) will be presented. Numerical results are presented in the last section.

2. MATHEMATICAL MODELING

2.1. Fluid flow equations

We consider an incompressible flow of a viscoelastic fluid. The movement is governed by the
dynamic equilibrium and the mass conservation, while fluid behavior is described by the
Oldroyd-B constitutive equation
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where U and V are the velocities components in the x- and y-directions respectively;

�=
��xx �xy

�xy �yy

�
Re=�

UL
�

is the Reynolds number

We=�1

U
L

is the Weissenberg number and wr=1− (�2/�1) (U and L represent a typical velocity and a
typical length of the flow).

2.2. The boundary conditions

The fully developed Poiseuille flow is imposed at the inlet and outlet sections (see Figure 1)

Inlet section (�m):

U(−Lm, y)=
1
8
�

1−
�y

4
�2�

, V(−Lm, y)=0

�xx(−Lm, y)=18wrWe
�Um

4
�2�y

4
�2

, �yy(−Lm, y)=0

Figure 1. The 4:1 abrupt planar contraction (Lm=10.0 and L�=20.0).
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�xy(−Lm, y)= −3wr

Um

4
y
4

Outlet section (��):

U(L�, y)=
1
2

(1−y2), V(L�, y)=0

Symmetry axis :

�U
�y

=0, V=0 and �xy=0

Wall (�1):

U=V=0

3. NUMERICAL METHOD

All of the governing equations can be written as a general transport equation in the form

div(�U�−���)=S� (4)

where � is the primitive variable, the coefficients � and � have different meanings for different
primitive variables, and S� represents the source term. The definition of different variables can
be found in Table I.

We use a staggered non-uniform grid system with pressure P, �xx and �yy given at the center
of a cell, the components of the velocity given at the middle of the sides, and the component
�xy of the stress given at the top of a cell (see Figure 2).

A finite volume formulation (FVF) is used as a discrete approximation to the continuity,
momentum, and constitutive equations.

The flow domain is divided into a set of non-overlapping control volumes over which
Equation (4) is integrated, and then the fluxes are approximated across the cell faces in terms
of nodal values.

A control volume in two-dimensional space is determined by a quadrilateral surrounding a
grid point (see Figure 3).

The subscript P refers to the grid point where the quantity is defined. The subscripts ‘e’, ‘w’,
‘s’, and ‘n’ denote the control volume faces where the derivatives are evaluated using the
central finite difference approximation.

The term S� is generally assumed to be a linear function of variable �

S�=SC+SP�P
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Table I. The definition of different variables.
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Figure 2. Pressure, velocity, and stress tensor in the cell (i, j ).

where SC is the part of S� that does not explicitly depend on � and SP is the coefficient of �P

which is made negative to enhance the numerical stability of the discretized equation (see
Reference [14]). The resulting integrated equation is written in pseudo-linear form

AP�P=�
m

Am�m+bP

where the index m runs over the nodal points W, E, N, S
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Figure 3. The control volume for grid point P.

bP=SC�V

Ai=Di f(�Pei �)+max(sign(i )Fi, 0)

AP=�
m

Am−SP�V

where �V is the control volume magnitude; Pei is the local Peclet number defined by
Pei=Fi/Di, while f(�Pei �), i�{e, w, n, s}, is a function of the discretization scheme, Fi is the
mass flux through the corresponding face normal to the i-direction of control volume; Di is the
local diffusion conductance. sign(i ) is +1 for i�{w, s} and −1 for i�{e, n}.

In our calculations, the hybrid scheme is used in the momentum equations

f(�Pei �)=max
�

0, 1−
�Pei �

2
�

while the upwind scheme is used in the constitutive equations for the stresses

f(�Pei �)=1

Linearization is performed by evaluating the coefficients using velocities from the previous
iteration.
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3.1. Solution algorithm

The discretized equations for each control volume in the computational domain consist of a set
of linear algebraic equations that can be solved easily by means of the symmetrical coupled
Gauss–Seidel (SCGS) smoothing procedure.

For viscoelastic fluid flow computations, the extra stress is non-linearly coupled via the
source term of the momentum equations. Here, the decoupled technique can be adopted in
such a way that the source term and the stress is updated by solving the discretized constitutive
equations for after obtaining the kinematics field from the momentum equations.

To obtain the kinematic fields an equation for the pressure is obviously necessary because
it is also an unknown. The strategy of pressure correction (SIMPLE) is used to produce the
pressure equation in which the continuity of the field is enforced via a pressure correction, so
that the resulting pressure relation, which couples the pressure and the velocities, replaces the
continuity relation, while the momentum equations retain their role for determining the
velocity field. As shown in Figure 3, for the P-centered control volume for scalar fields, the
velocities U� i (i=x, y) are discretized using their values on the faces normal to the i-direction.
Thus, the location of the control volume for U� i in the momentum equations is staggered only
in the i-direction relative to the control volume for the fields.

The steps of present algorithm are as follows:

1. Compute the velocities.
2. Compute the pressure and correct the velocities.
3. Compute the stress.

4. MULTIGRID METHOD

The problem can be symbolized by: find (U� , P, ��� ) solution of

L(U� , P, ��� )=0 in � (5)

where L is a non-linear operator.
After discretization of Equation (5), we get a non-linear dimensional operator Ln, which

satisfies

Ln(Un, Pn, �n)=bn

In order to solve this problem we use a FAS multigrid algorithm (see Brandt [16] and
Hackbusch [17]).

Let (�k)1�k�n be a set of n grids of domain �, �n is the finest grid and �1 is the coarsest
grid. For k=1, . . . , n, let Lk be a non-linear finite-dimensional operator approximation of L
on the grid �k. We denote by (U� k, Pk, ��� k) an approximation of (U� , P, ��� ) on the grid �k. Ek

k+1

denotes the extension operator from grid �k to grid �k+1 an Rk
k−1 is the projection operator

from grid �k to grid �k−1.
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On each grid we solve

Lk(U� k, Pk, ��� k)=bk (6)

by a relaxation procedure Mk and we denote by Rk
m(U� k

(1), Pk
(1), ��� k

(1)) the vector obtained after m
iterations with the initial vector (U� k

(1), Pk
(1), ��� k

(1)). The object of the FAS algorithm is to solve

Ln(U� n, Pn, ��� n)=0 (7)

on the finest grid �n by solving intermediate problems (6) on coarser grids in order to reduce
the number of iterations on the finest grid.

FAS algotithm

{0} (U� n, Pn, ��� n) initial approximation of solution of Equation (7)
{1} k�n
{2} (U� k, Pk, ��� k)=Mk

mk(U� k, Pk, ��� k) (mk iterations of relaxation on grid �k)
{3} Compute bk−1=Rk

k−1(bk−Lk(U� k, Pk, ��� ))+Lk−1(Rk
k−1(U� k, Pk, ��� k))(U� k−1, Pk−1, ��� k−1)=

Rk
k−1(U� k, Pk, ��� k) (initializing of solution on grid �k−1) k�k−1 (crossing to the coarser

grid)
{4} If k�1, go to {2}

Else (U� 1, P1, ��� 1)=M1
m1(U� 1, P1, ��� 1) (m1 iterations of relaxation on the coarsest grid �1)

{5} Correct the approximation obtained on �k+1 with the extension of ((U� k, Pk, ��� k)−
Rk+1

k (U� k+1, Pk+1, ��� k+1))

(U� k+1, Pk+1, ��� k+1)= (U� k+1, Pk+1, ��� k+1)+Ek
k+1((U� k, Pk, ��� k)−Rk+1

k (U� k+1, Pk+1, ��� k+1))

k�k+1 (crossing to the finer grid)
{6} (U� k, Pk, ��� k)=Mk

�k(U� k, Pk, ��� k) (�k iterations of relaxation on grid �k)
{7} If k�n, go to {5}

Else convergence test
If convergence done, good, end
Else go to {2}

In practice for the FAS procedure we take m1=10, �k=3, and mk=2 (k=2, . . . , n) for
small Weissenberg numbers and m1=50, �k=20 and mk=20 (k=2, . . . , n) for large Weis-
senberg numbers.

The operators Rk
k+1 and Ek

k+1 represent a tiny part of the CPU time, so we can take good
interpolations in order to decrease the number of global iterations of the finest grid. For more
details on these operators, the reader is referred to Reference [18].

4.1. Resolution on one grid: decoupled formulation

In this section we see how to solve system (6) on each grid �k. This system is obtained by
discretizing problem (5) on grid �k.

On each grid �k we decompose system (6) as follows:
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Lk
1(U� k, Pk, ��� k)=bk

1 (8)

Lk
2(U� k, Pk, ��� k)=bk

2 (9)

Equation (8) presents the discretization of the momentum and continuity equation and
boundary conditions for U� . The unknown variables are velocity and pressure. The stress tensor
is a known datum of problem (8).

Equation (9) presents the discretization of the constitutive equation and the boundary
conditions for ��� . The unknown variable is the stress tensor and the velocity field is known. To
solve Equation (7), we execute mk iterations in the following method:

Step 1: At the first iteration, ��� k is initialized on grid �k, in the following iterations, ��� k is given
by Step 2 of the previous iteration. We take this value of ��� k in Equation (8), which we solve
by executing a number, it�it, of equilibrium and continuity iterations.

Step 2: We take back the values of U� k obtained in Step 1 for Equation (9), which we solve by
executing a number, itcont, of stress tensor iterations.

The numerical experiences have shown that we must choose it�it larger than itcont to ensure
the stability of the method. In numerical tests we have taken in�it=5 or 10 and itcont=1.

5. NUMERICAL RESULTS

The algorithm developed here is tested on the benchmark problem: the 4:1 contraction
problem. The difficulty of this problem comes from the geometric singularity at the re-entrant
corner. Most previous numerical simulations for this problem encountered an upper limit of
We that decreases with increasing mesh resolution. Four different meshes depicted in Figures
4–7 are considered for the study. They have in common entry and exit lengths equal to 10 and
20 radii respectively (Lm=10, L�=20). They are assumed to be sufficiently long so that the
fully developed velocity and stress profiles are at the inlet and outlet boundaries. For a further
visualization we have reported on the grids just in the vicinity of the corner, with x� [−4, 4].
Very thin cells were required around the re-entrant section to account for the large stress that
develops in the vicinity of the corner. Table II gives the total number of nodes (NN) and the
area (Area) of the cells adjacent to the re-entrant corner for each grid.

Figure 4. Mesh 1.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 36: 885–902
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Figure 5. Mesh 2.

Figure 6. Mesh 3.

Figure 7. Mesh 4.

Table II. The NN and the area for each grid

AreaNN

5×10−3624Mesh 1
1.25×10−3Mesh 2 2496

Mesh 3 9984 3.125×10−4

Mesh 4 6144 9.76×10−3

To test the convergence of the simulations with mesh refinement, we plot profiles of the first
normal stress difference (�xx−�yy) along the centerline (Figure 8). It is clear that, when
compared with Meshes 1 and 3, Mesh 2 allows good convergence; and we will limit the present
simulation to this grid. Table III gives the time CPU reclaimed by each grid with both the
single grid and the multigrid algorithm. This table shows that if we use the multigrid
algorithm, we can simulate the 4:1 contraction problem in a short time by using a very thin
mesh.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 36: 885–902
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Figure 8. Profiles of (�xx−�yy) on y=1: – · – · – , Mesh 1; – – – , Mesh 2; — , Mesh 3.

Table III. The CPU of each mesh, We=1.5.

Mesh 1 Mesh 2 Mesh 3CPU Mesh 4

Single grid 1 min 11 s 5 min 20 s 24 min 12 s 10 min 29 s
49 s 2 min 16 s 6 min 42 s 3 min 41 sMultigrid

Figure 9. Profiles of �xx on y=1: – – – , Mesh 2; — , Mesh 4.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 36: 885–902
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To validate the use of non-uniform grid we plot profiles of �xx and �yy along the axis y=1
(Figures 9 and 10) using Meshes 4 and 2. These figures show that if we use a non-uniform grid,
we can simulate the 4:1 contraction with a small number of nodes and very thin cells around
the re-entrant corner.

The flow along the centerline has an elongation nature, and the elongational properties of
the rheological models play an important role in determining the way it responds to the
accelerating forces when it approaches the corner. Velocity components profiles for Weis-
senberg number We=4.5 are plotted in Figure 11. This figure shows an important velocity
overshoot near the corner.

Figure 10. Profiles of �xy on y=1: — , Mesh 2; – – – , Mesh 4.

Figure 11. Velocity components profiles: — , U ; – – – , V.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 36: 885–902
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First normal stress difference profiles for different value of the Weissenberg number are
reproduced in Figure 12. The maximum of (�xx−�yy) is reached just upstream of the entry
section. As We increases, the value of this maximum increases sharply and the domain must be
long enough.

Figure 12. First normal stress difference: — , We=4.5; – – – , We=3; – · – · – , We=1.5.

Figure 13. Profiles of �xx on y=0, – · – · – ; y=0.9, – – – ; y=1, — ; with We=4.5.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 36: 885–902
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Profiles of the normal extra-stress �xx as well as �yy are presented in Figures 13 and 14 for
different values of y. We notice that when y increases, �xx and �yy peaks increase dramatically.
The �xx and �yy profiles, on y=1, for different values of We are reproduced in Figures 15 and
16. We notice that as We increases, the value of the maximum increases.

Figure 14. Profiles of �xx on y=0.9, – – – ; y=1, — ; with We=1.5.

Figure 15. Profiles of �xx : – · – · – , We=1.5; – – – , We=3; — , We=4.5.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 36: 885–902
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Figure 16. Profiles of �xx : – · – · – , We=1; – – – , We=2; — , We=3.

In Figures 17 and 18 the pressure and streamline distributions are shown for (Re, wr, We)=
(0.1, 0.89, 4.5), where the solution becomes more and more oscillatory near re-entrant corner
as We increases. In Figures 19 and 20 we present the distributions of �xx and �yy for
(Re, wr, We)= (0.1, 0.89, 4.5). It is clear that the re-entrant corner represents a singularity;
many lines pass across this point.

Figure 17. Isolines of pressure.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 36: 885–902
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Figure 18. Isolines of streamline function.

Figure 19. Isolines of �xx.

Figure 20. Isolines of �xy.
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6. CONCLUSION

The planar 4:1 contraction flow of an Oldroyd-B fluid has been simulated by using a FVM
with the FAS multigrid algorithm on a non-uniform staggered grid. The conservative and
constitutive equations are solved using the FVM with a hybrid scheme for the velocities and
first-order upwind approximation for the viscoelastic stresses. The iterative SIMPLE algorithm
is employed to relax the coupled momentum and continuity equations. The non-linear
algebraic equations over the flow domain are solved iteratively by the SCGS method. The
solutions show that at high Weissenberg number, the domain must be long enough and the
mesh must be thin enough. As a result, the FVM with FAS algorithm have allowed us to
reproduce a stable and smooth solution on a very thin mesh with a small time CPU.
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